Strengthening of structures with post-tensioned CFRP plates
StressHead®-CarboStress® post-tensioning system

Bridge strengthening – Earthquake strengthening – Structural strengthening
Strengthening of structures with post-tensioned CFRP plates

StressHead®-CarboStress® is a system for strengthening by the post-tensioning of carbon fiber reinforced plastic (CFRP) plates. The post-tensioned plate is anchored with a compact StressHead that remains permanently on the structure. Movable and fixed anchors are used to transfer the tensioning force into the structure and these can be combined and positioned according to the needs of the project.

Advantages
- Easy to handle
- Lightweight
- Low space requirements
- Non corroding
- Concentrated transfer of force at plate ends
- Outstanding fatigue behaviour
- High movement range – no tension loss
- Can be applied under operational conditions

StressHead®-CarboStress® post-tensioning system components

StressHead® 220
- Material: CFRP
- Tensioning force $F_{P0} = 220$ kN
- Anchored force $F_{Spk,min} = 300$ kN

Sika® CarboDur® S626 CFRP plate
- High-strength CFRP plate
- Post-tension $\sigma_{P0} = 1'410$ N/mm2
- Post-strain $\varepsilon_{P0} = 8.5 \%$
- Tensile strength $f_k \geq 2'800$ N/mm2
- Longitudinal modulus $\geq 165'000$ N/mm2
- Protective plastic duct optional

Movable and fixed anchorage

Type III anchor

Type II anchor
Bridge structures

The load-bearing capacity or functionality of bridges can deteriorate due to higher than anticipated live loads, changes to the structural system, corrosion, or defects in their design and construction. Insufficient longitudinal or transverse bearing capacity of the concrete deck can often lead to cracks. CFRP plates post-tensioned with the StressHead®-CarboStress® system can reduce crack widths due to the active tensioning force that is applied.

Advantages

- Low space requirement on the bridge deck
- Can be used both transversely and longitudinally
- Secure end anchorage
- Large movement range – low tension losses
- No corrosion

1) Shear strengthening
2) Reduction in crack widths and damage
3) Strengthening for additional demands
4) Transverse and longitudinal bending strength enhancement
5) Structural support and pier strengthening

Industrial and high-rise buildings (incl. earthquake strengthening)

Slabs and beams often have to be strengthened to allow for higher live loads and changes of use for example. The concentrated transfer of force at the end of the CFRP plates results in clearly configured structural conditions. When the strengthening requirements cannot be achieved with bonded CFRP plates without tension, the StressHead®-CarboStress® system is the best solution. Masonry walls often have insufficient load-bearing capacity to absorb the horizontal forces generated by earthquakes. Vertical post-tensioning with CFRP plates utilises the shear strength of the masonry to its fullest capacity.

Advantages

- Vertical post-tensioning utilises the shear strength of the masonry to the full
- Lightweight units, no lifting gear
- Improved durability
- Can also be used to strengthen historic buildings

1) Ceiling / soffit strengthening
2) Earthquake resistance strengthening
3) Strengthening due to change of use
Installation process

Step 1:
Drilling for the anchors

Step 2:
Fitting the fixed and movable anchors

Step 3:
Installing the CFRP plate at the anchors

Step 4:
Post-tensioning the CFRP plate

Reference projects

Earthquake strengthening
Hospital Aarau, Switzerland

Bridge strengthening
Bridge N29, Qatar

Beam strengthening
Paper mill "Perlen", Switzerland

Further information

Publications und Downloads
www.stresshead.ch

StressHead AG
Leumattstrasse 33
CH-6002 Lucerne
T +41 41 210 40 30